Optimized Dropkey-Based Grad-CAM: Toward Accurate Image Feature Localization

Sensors (Basel). 2023 Oct 10;23(20):8351. doi: 10.3390/s23208351.

Abstract

Regarding the interpretable techniques in the field of image recognition, Grad-CAM is widely used for feature localization in images to reflect the logical decision-making information behind the neural network due to its high applicability. However, extensive experimentation on a customized dataset revealed that the deep convolutional neural network (CNN) model based on Gradient-weighted Class Activation Mapping (Grad-CAM) technology cannot effectively resist the interference of large-scale noise. In this article, an optimization of the deep CNN model was proposed by incorporating the Dropkey and Dropout (as a comparison) algorithm. Compared with Grad-CAM, the improved Grad-CAM based on Dropkey applies an attention mechanism to the feature map before calculating the gradient, which can introduce randomness and eliminate some areas by applying a mask to the attention score. Experimental results show that the optimized Grad-CAM deep CNN model based on the Dropkey algorithm can effectively resist large-scale noise interference and achieve accurate localization of image features. For instance, under the interference of a noise variance of 0.6, the Dropkey-enhanced ResNet50 model achieves a confidence level of 0.878 in predicting results, while the other two models exhibit confidence levels of 0.766 and 0.481, respectively. Moreover, it exhibits excellent performance in visualizing tasks related to image features such as distortion, low contrast, and small object characteristics. Furthermore, it has promising prospects in practical computer vision applications. For instance, in the field of autonomous driving, it can assist in verifying whether deep learning models accurately understand and process crucial objects, road signs, pedestrians, or other elements in the environment.

Keywords: class activation mapping; computer vision; convolutional neural networks; interpretability.