Because of the ease with which oxide films form on its surfaces, stainless steel has strong corrosion resistance and excellent processing performance. Electrochemical machining (ECM) is a flexible process that can create microstructures on stainless steel (SS304); however, with traditional masked ECM, the efficiency and accuracy of microstructure machining are low. Proposed here is the use of a non-Newtonian fluid [polyacrylamide (PAM)] as the electrolyte. To date, there have been few papers on the electrochemical dissolution behavior of stainless-steel micromachining with a non-Newtonian fluid as the electrolyte. The aims of the study reported here were to investigate the electrochemical properties of SS304 with PAM and PAM-NaOH as electrolytes, and to explain their electrochemical corrosion mechanisms. The effects of different electrolytes were compared, and the polarization curves of SS304 in PAM and PAM-NaOH electrolyte solutions with different components were analyzed and compared with that in NaNO3 electrolyte. Then, the effects of the main processing parameters (pulse voltage, frequency, and duty ratio) on the machining performance were investigated in detail. A microhole array was obtained with a good quality comprising an average diameter of 330.11 µm, an average depth of 16.13 µm, and a depth-to-diameter ratio of 0.048. Using PAM to process microstructures on stainless-steel surfaces was shown to be feasible, and experiments indicated that the mixed electrolyte (PAM-NaOH) had not only the physical characteristics of a non-Newtonian fluid but also the advantages of a traditional electrolyte to dissolve processing products, and it effectively improved the processing accuracy of masked ECM for SS304.
Keywords: masked electrochemical machining; microhole; non-Newtonian fluid; polyacrylamide electrolyte.