Small vessel diseases (SVD) is an umbrella term including several entities affecting small arteries, arterioles, capillaries, and venules in the brain. One of the most relevant and prevalent SVDs is cerebral amyloid angiopathy (CAA), whose pathological hallmark is the deposition of amyloid fragments in the walls of small cortical and leptomeningeal vessels. CAA frequently coexists with Alzheimer's Disease (AD), and both are associated with cerebrovascular events, cognitive impairment, and dementia. CAA and AD share pathophysiological, histopathological and neuroimaging issues. The venular involvement in both diseases has been neglected, although both animal models and human histopathological studies found a deposition of amyloid beta in cortical venules. This review aimed to summarize the available information about venular involvement in CAA, starting from the biological level with the putative pathomechanisms of cerebral damage, passing through the definition of the peculiar angioarchitecture of the human cortex with the functional organization and consequences of cortical arteriolar and venular occlusion, and ending to the hypothesized links between cortical venular involvement and the main neuroimaging markers of the disease.
Keywords: AD; Alzheimer’s disease; CAA; ascending venule; cerebral amyloid angiopathy; cortical angioarchitecture; descending artery; glymphatic system; microbleeds; microinfarction; perivascular spaces; pial network; venule.