Ru Cluster Incorporated NiMoO(P)4 Nanosheet Arrays as High-Efficient Bifunctional Catalyst for Wind/Solar-To-Hydrogen Generation Systems

Adv Sci (Weinh). 2023 Dec;10(35):e2304179. doi: 10.1002/advs.202304179. Epub 2023 Oct 25.

Abstract

Developing cost-efficient bifunctional water splitting catalysts is crucial for sustainable hydrogen energy applications. Herein, ruthenium (Ru)-incorporated and phosphorus (P)-doped nickel molybdate (Ru-NiMoO(P)4 ) nanosheet array catalysts are synthesized. Due to the synergy of Ru clusters and NiMoO(P)4 by the modulated electronic structure and the rich active sites, impressively, Ru-NiMoO(P)4 exhibits superior OER (194 mV @ 50 mA cm-2 ) and HER (24 mV @ 10 mA cm-2 ) activity in alkaline media, far exceeding that of commercial Pt/C and RuO2 catalysts. Meanwhile, as bifunctional catalyst, to drive the overall water splitting at the current density of 10 mA cm-2 , Ru-NiMoO(P)4 requires only 1.45 V and maintaining stable output for 100 h. Furthermore, Ru-NiMoO(P)4 also possesses excellent capability for seawater electrolysis hydrogen production. Moreover, the successful demonstration of wind and solar hydrogen production systems provide the feasibility of the ultra-low Ru loading catalyst for large-scale hydrogen production in the future.

Keywords: bifunctional catalysts; hydrogen production; solar/wind-to-hydrogen integrated system; water splitting.