Mandibular retrognathia (C2Rm) is one of the most common oral pathologies. Acquiring a better understanding of the points of impact of C2Rm on the entire skull is of major interest in the diagnosis, treatment, and management of this dysmorphism, but also permits us to contribute to the debate on the changes undergone by the shape of the skull during human evolution. However, conventional methods have some limits in meeting these challenges, insofar as they require defining in advance the structures to be studied, and identifying them using landmarks. In this context, our work aims to answer these questions using AI tools and, in particular, machine learning, with the objective of relaying these treatments automatically. We propose an innovative methodology coupling convolutional neural networks (CNNs) and interpretability algorithms. Applied to a set of radiographs classified into physiological versus pathological categories, our methodology made it possible to: discuss the structures impacted by retrognathia and already identified in literature; identify new structures of potential interest in medical terms; highlight the dynamic evolution of impacted structures according to the level of gravity of C2Rm; provide for insights into the evolution of human anatomy. Results were discussed in terms of the major interest of this approach in the field of orthodontics and, more generally, in the field of automated processing of medical images.
© 2023. Springer Nature Limited.