Background: To investigate the influence of miR-144-3p on the proliferation, migration and invasion of colon carcinoma by targeting secreted frizzled-related protein 1 (SFRP1) as well as of the Wnt/β-catenin signaling pathway. Methods: Based on the TCGA database, the association between the expression of miR-144-3p and the clinical information and prognosis of patients with colon carcinoma was examined, and SFRP1 was selected as the target gene for further studies based on bioinformatics prediction tools. CCK8 assay, wound healing assay and transwell invasion assay were employed to examine the impact of miR-144-3p on colon carcinoma cells. The regulation of SFRP1 by miR-144-3p was investigated using a dual-luciferase reporter system, and a rescue experiment was conducted to further elucidate whether miR-144-3p promotes the migration of colon carcinoma cells through targeting SFRP1 or not. The Wnt/β-catenin signaling pathway-mediated effect of miR-144-3p in colon carcinoma was finally validated through the targeting of SFRP1. Results: The bioinformatics analysis showed that the miR-144 expression levels were substantially greater in colon carcinoma tissue than in para-carcinoma tissue and were closely with clinical stage and prognosis. The findings obtained from the trial indicated that miR-144-3p substantially expressed in colon carcinoma tissue sample and the colon carcinoma cells, and the overexpressed miR-144-3p boosted the colon carcinoma cells' proliferation, migration and invasion. The results of dual-luciferase reporter gene assay revealed that miR-144-3p targeted SFRP1, and rescue experiment was carried out and its results indicated that miR-144-3p increased colon carcinoma cells' migration through targeting SFRP1. In addition, the molecular axis of miR-144-3p/SFRP1 may over-activate the Wnt/β-catenin signaling pathway. Conclusions: The present study has identified a novel malignant biological behavior, namely the ability of miR-144-3p to enhance the proliferation, migration and invasion of colon carcinoma cells by targeting SFRP1 and activating the Wnt/β-catenin signaling pathway. Consequently, miR-144-3p emerges as a promising diagnostic and therapeutic target for colon carcinoma.
© The author(s).