Background: Nystagmus generated during bithermal caloric test assesses the horizontal vestibulo-ocular-reflex. Any induced symptoms are considered unwanted side effects rather than diagnostic information.
Aim: We hypothesized that nystagmus slow-phase-velocity (SPV) and subjective symptoms during caloric testing would be higher in vestibular migraine (VM) patients compared with peripheral disorders such as Meniere's disease (MD) and non-vestibular dizziness (NVD).
Methods: Consecutive patients (n = 1373, 60% female) referred for caloric testing were recruited. During caloric irrigations, patients scored their subjective sensations. We assessed objective-measures, subjective vertigo (SVS), subjective nausea (SNS), and test completion status.
Results: Nystagmus SPV for VM, MD (unaffected side), and NVD were 29 ± 12.8, 30 ± 15.4, and 28 ± 14.2 for warm irrigation and 24 ± 8.9, 22 ± 10.0, and 25 ± 12.8 for cold-irrigation. The mean SVS were 2.5 ± 1.1, 1.5 ± 1.33, and 1.5 ± 1.42 for warm irrigation and 2.2 ± 1.1, 1.1 ± 1.19, and 1.1 ± 1.16 for cold-irrigation. Age was significantly correlated with SVS and SNS, (p < 0.001) for both. The SVS and SNS were significantly higher in VM compared with non-VM groups (p < 0.001), and there was no difference in nystagmus SPV. VM patients SVS was significantly different to the SVS of migraineurs in the other diagnostic groups (p < 0.001). Testing was incomplete for 34.4% of VM and 3.2% of MD patients. To separate VM from MD, we computed a composite value representing the caloric data, with 83% sensitivity and 71% specificity. Application of machine learning to these metrics plus patient demographics yielded better separation (96% sensitivity and 85% specificity).
Conclusion: Perceptual differences between VM and non-VM patients during caloric stimulation indicate that subjective ratings during caloric testing are meaningful measures. Combining objective and subjective measures could provide optimal separation of VM from MD.
Keywords: Caloric test; Subjective vertigo; Vestibular migraine.
© 2023. The Author(s).