The study proposes a novel ultrasound-assisted freezing method for button mushrooms, which combines probe-type ultrasonication and immersion freezing. The effects of power ultrasound in both continuous and pulse modes (at five levels of 50, 100, 200, 300, and 400 W) on the freezing process and quality attributes of frozen mushrooms were investigated. Results showed that ultrasound-assisted freezing significantly reduced freezing time compared to immersion freezing, potentially due to the formation of abundant cavitation bubbles that enhanced heat and mass transfer rates. The lowest weight loss was achieved by the continuous mode of 200 W ultrasound (UC200), which may be attributed to the formation of smaller ice crystals during ultrasonication. Ultrasound also prevented acidification and resulted in the retention of the samples' pH and higher total solid solution than immersion freezing. The optimal ultrasound power and duty cycle for different freezing outcomes were determined using the TOPSIS method. UC200 was found to be the best treatment for total freezing time and minimizing weight loss, while a combination of UC200 and UC400 was optimal for gumminess and chewiness. The proposed ultrasound-assisted freezing method shows promise as an environmentally friendly and safe technique for commercial use in the future.
Keywords: Mushroom; Optimization; Ultrasound-assisted-freezing.
Copyright © 2023 The Author(s). Published by Elsevier B.V. All rights reserved.