The use of deep learning methods for the automatic detection and quantification of bone metastases in bone scan images holds significant clinical value. A fast and accurate automated system for segmenting bone metastatic lesions can assist clinical physicians in diagnosis. In this study, a small internal dataset comprising 100 breast cancer patients (90 cases of bone metastasis and 10 cases of non-metastasis) and 100 prostate cancer patients (50 cases of bone metastasis and 50 cases of non-metastasis) was used for model training. Initially, all image labels were binary. We used the Otsu thresholding method or negative mining to generate a non-metastasis mask, thereby transforming the image labels into three classes. We adopted the Double U-Net as the baseline model and made modifications to its output activation function. We changed the activation function to SoftMax to accommodate multi-class segmentation. Several methods were used to enhance model performance, including background pre-processing to remove background information, adding negative samples to improve model precision, and using transfer learning to leverage shared features between two datasets, which enhances the model's performance. The performance was investigated via 10-fold cross-validation and computed on a pixel-level scale. The best model we achieved had a precision of 69.96%, a sensitivity of 63.55%, and an F1-score of 66.60%. Compared to the baseline model, this represents an 8.40% improvement in precision, a 0.56% improvement in sensitivity, and a 4.33% improvement in the F1-score. The developed system has the potential to provide pre-diagnostic reports for physicians in final decisions and the calculation of the bone scan index (BSI) with the combination with bone skeleton segmentation.
Keywords: Double U-Net; bone metastasis segmentation; deep learning; negative mining; pre-train; transfer learning.