Background: Institutes of dermatopathology are faced with considerable challenges including a continuously rising numbers of submitted specimens and a shortage of specialized health care practitioners. Basal cell carcinoma (BCC) is one of the most common tumors in the fair-skinned western population and represents a major part of samples submitted for histological evaluation. Digitalizing glass slides has enabled the application of artificial intelligence (AI)-based procedures. To date, these methods have found only limited application in routine diagnostics. The aim of this study was to establish an AI-based model for automated BCC detection.
Patients and methods: In three dermatopathological centers, daily routine practice BCC cases were digitalized. The diagnosis was made both conventionally by analog microscope and digitally through an AI-supported algorithm based on a U-Net architecture neural network.
Results: In routine practice, the model achieved a sensitivity of 98.23% (center 1) and a specificity of 98.51%. The model generalized successfully without additional training to samples from the other centers, achieving similarly high accuracies in BCC detection (sensitivities of 97.67% and 98.57% and specificities of 96.77% and 98.73% in centers 2 and 3, respectively). In addition, automated AI-based basal cell carcinoma subtyping and tumor thickness measurement were established.
Conclusions: AI-based methods can detect BCC with high accuracy in a routine clinical setting and significantly support dermatopathological work.
© 2023 Deutsche Dermatologische Gesellschaft (DDG).