Method for Measuring Absolute Optical Properties of Turbid Samples in a Standard Cuvette

Appl Sci (Basel). 2022 Nov;12(21):10903. doi: 10.3390/app122110903. Epub 2022 Oct 27.

Abstract

Many applications seek to measure a sample's absorption coefficient spectrum to retrieve the chemical makeup. Many real-world samples are optically turbid, causing scattering confounds which many commercial spectrometers cannot address. Using diffusion theory and considering absorption and reduced scattering coefficients on the order of 0.01 mm-1 and 1 mm-1, respectively, we develop a method which utilizes frequency-domain to measure absolute optical properties of turbid samples in a standard cuvette (45 mm × 10 mm × 10 mm). Inspired by the self-calibrating method, which removes instrumental confounds, the method uses measurements of the diffuse complex transmittance at two sets of two different source-detector distances. We find: this works best for highly scattering samples (reduced scattering coefficient above 1 mm-1); higher relative error in the absorption coefficient compared to the reduced scattering coefficient; accuracy is tied to knowledge of the sample's index of refraction. Noise simulations with 0.1 % amplitude and 0.1° = 1.7 mrad phase uncertainty find errors in absorption and reduced scattering coefficients of 4 % and 1 %, respectively. We expect that higher error in the absorption coefficient can be alleviated with highly scattering samples and that boundary condition confounds may be suppressed by designing a cuvette with high index of refraction. Further work will investigate implementation and reproducibility.

Keywords: absolute optical properties; absorption coefficient; cuvette; diffusion theory; frequency-domain near-infrared spectroscopy; optical spectroscopy; reduced scattering coefficient; sample measurement; self-calibration; turbid samples.