Coordination and fragmentation chemistry of CyMe4-BTPhen complexes with lanthanides and actinides: A combined investigation by ESI-MS and DFT calculations

Eur J Mass Spectrom (Chichester). 2024 Feb;30(1):47-59. doi: 10.1177/14690667231206035. Epub 2023 Oct 9.

Abstract

To further understand the complexation and fragmentation during the extraction process, the formation of 2,9-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-12,4-benzotriazin-3-yl)-1,10-phenanthroline (CyMe4-BTPhen) complexes with lanthanides (Ln = La, Ce, Nd, Sm, Eu, Yb) and actinides (UO22+, Th4+) was observed by electrospray ionization mass spectrometry (ESI-MS) technique and density functional theory (DFT) calculations. Mass spectrometry titrations showed the variation relationship of different complexes in acetonitrile. For lanthanides, the major complexes were 1:2 species ([Ln(L)2]3+ and [Ln(L)2(NO3)]2+) with a ratio of 1:2, which were observed at the initial addition of Ln3+, whereas the species ([Ln(L)(NO3)2]+) with a ratio of 1:1 was detected when the [Ln]/[L] concentration ratio reached 1.0. For UO22+ and Th4+ complexes, 1:1 or 1:2 species ([UO2L(NO3)]+, Th(L)2(NO3)3+ and Th(L)2(NO3)22+) were formed. The fragmentation chemistry of both the ligand and the complex cations was characterized in detail by collision-induced dissociation. The fragmentation process of CyMe4-BTPhen was unfolded sequentially on both sides of the ligand by cleavage of C-C and C-N bonds. DFT calculations provided a detailed analysis of the structures and thermodynamics of those complexes, which indicated that the stable complexes formed in acetonitrile solution were consistent with the ESI-MS results.

Keywords: CyMe4-BTPhen; ESI-MS; actinides; fragmentation; lanthanides.