Chronic supplementation of noni in diabetic type 1-STZ rats: effects on glycemic levels, kidney toxicity and exercise performance

Diabetol Metab Syndr. 2023 Oct 4;15(1):191. doi: 10.1186/s13098-023-01171-1.

Abstract

Noni is a fruit with potential medicinal use preventing elevated blood glucose levels in diabetes mellitus. Its effects have been attributed to an antioxidant property in several other diseases. However, the effects of noni-chronic supplementation on exercise performance in the presence of diabetes conditions are not known. Thirty-two male Wistar rats were used to verify the effects of chronic noni (Morinda citrifolia L) juice administration on glycemia, triglyceride levels, and its relation to physical performance. In addition, it was verified if chronic noni supplementation is safe for clinical use through kidney morphology analysis. In half of the rats, diabetes mellitus (DM) was induced with STZ. All rats were submitted to an incremental workload running test (IWT) until fatigued so that oxygen consumption and performance indexes (exercise time to fatigue and workload) could be analyzed before noni administration. Then, the control and DM groups received a placebo (saline solution) or noni juice (dilution 2:1) at a dose of 2 mL/kg once a day for 60 days. The result was four groups: control + placebo (CP), control + noni (CN), DM + placebo (DMP), and DM + noni (DMN). Our dose was based on in previous study by Nayak et al. (2011) that observed a significant reduction in glycemia with 2 ml/kg of the noni juice without any toxicity effect cited. Groups were then given a third IWT to verify the effect of the noni juice on exercise performance (exercise time to fatigue, workload, maximal oxygen consumption) and glycemia. Twenty-four hours after the third test, all animals were euthanized and blood and kidneys were removed for posterior analysis. The DM induction with STZ impaired the performance by 39%. Noni administration improved the time to fatigue and workload in DM rats beyond reducing hyperglycemia. These results could be associated with an improved energy efficiency promoted by noni ingestion, since the oxygen consumption was not different between the groups, although the exercise was longer in animals with noni ingestion. Our results provided evidence that chronic noni administration causes kidney damage since increased Bowman's space area in the control rats, suggesting glomerular hyperfiltration at the same magnitude as the non-treated DM group.In conclusion, chronic noni ingestion promoted glycemic control and improved the performance in DM rats but caused kidney toxicity.

Keywords: Exercise, fatigue, glucose; Oxygen consumption; Renal toxicity.