Vertically aligned carbon nanotubes array offers unique properties for various applications. Detaching them from the growth substrate, while preserving their vertical structure, is essential. Quartz, a cost-effective alternative to silicon wafers and metal-based substrates, can serve as both a reaction chamber and a growth substrate. However, the strong adhesive interaction with the quartz substrate remains an obstacle for further applications. Herein, we presented a simple and well-controlled exfoliation strategy assisted by the introduction of heteroatoms at root ends of a carbon nanotubes array. This strategy forms lower surface polarity of the carbon fragment to significantly reduce adhesion to the quartz substrate, which contributes to the effortless exfoliation. Furthermore, this scalable approach enables potential mass production on recyclable quartz substrates, enhancing the cost-effectiveness and efficiency. This work can establish a solid foundation for cost-competitive carbon nanotube-based technologies, offering a promising avenue for their widespread applications.
Keywords: Air treatment; Carbon nanotubes array; Exfoliation; Heteroatom-assisted; Quartz substrate.