Achieving Ultrahigh Energy Storage Performance for NaNbO3-Based Lead-Free Antiferroelectric Ceramics via the Coupling of the Stable Antiferroelectric R Phase and Nanodomain Engineering

ACS Appl Mater Interfaces. 2023 Oct 18;15(41):48354-48364. doi: 10.1021/acsami.3c09630. Epub 2023 Oct 4.

Abstract

NaNbO3(NN)-based lead-free eco-friendly antiferroelectric (AFE) ceramics with an extremely high maximum polarization (Pm) are believed to be a promising alternative to traditional lead-based ceramics. Nevertheless, the high energy dissipation resulting from the large polarization hysteresis, which arises from the AFE-ferroelectric (FE) phase transition, poses a great challenge to the application of this promising ceramic. Herein, an excellent recoverable energy storage density (Wrec) was attained by intentionally designing a (0.86 - x) NaNbO3-0.14CaTiO3-xBiMg2/3Nb1/3O3 (NN-CT-xBMN) relaxor antiferroelectric ceramic, attributed to the synergistic effect of the stable AFE R phase and nanodomain engineering to overcome the bottleneck. The obtained results illustrate that the inclusion of BMN causes the transition from AFE microdomains to nanodomains and stabilizes the relaxor AFE orthorhombic R phase, which generates a highly stable polarization field response with low hysteresis and delays the AFE-FE phase transition, thus improving energy storage density. As a consequence, a high Wrec of 5.41 J cm-3 with an excellent conversion efficiency η of 86.7% was obtained in the NN-CT-0.08BMN ceramic. Moreover, the NN-CT-0.08BMN ceramic exhibits superior stability in temperature (25-150 °C), frequency (1-600 Hz), and fatigue behavior (10°-104 cycles) together with a large current density (CD = 810 A cm-2), ultrahigh power density (PD = 118 MW cm-3), and ultrafast discharge rate (t0.9 < 0.7 μs). This superior energy storage density, coupled with outstanding stability, suggests that the NN-CT-0.08BMN ceramic has the potential to be a promising candidate for pulsed power applications and power electronics.

Keywords: dielectric energy storage; lead-free antiferroelectric; power density; relaxor behavior; sodium niobate.