Soil microbial and enzyme activities in different land use systems of the Northwestern Himalayas

PeerJ. 2023 Sep 26:11:e15993. doi: 10.7717/peerj.15993. eCollection 2023.

Abstract

Soil microbial activity (SMA) is vital concerning carbon cycling, and its functioning is recognized as the primary factor in modifying soil carbon storage potential. The composition of the microbial community (MC) is significant in sustaining environmental services because the structure and activity of MC also influence nutrient turnover, distribution, and the breakdown rate of soil organic matter. SMA is an essential predictor of soil quality alterations, and microbiome responsiveness is imperative in addressing the escalating sustainability concerns in the Himalayan ecosystem. This study was conducted to evaluate the response of soil microbial and enzyme activities to land conversions in the Northwestern Himalayas (NWH), India. Soil samples were collected from five land use systems (LUSs), including forest, pasture, apple, saffron, and paddy-oilseed, up to a depth of 90 cm. The results revealed a significant difference (p < 0.05) in terms of dehydrogenase (9.97-11.83 TPF µg g-1 day-1), acid phosphatase (22.40-48.43 µg P-NP g-1 h-1), alkaline phosphatase (43.50-61.35 µg P-NP g-1 h-1), arylsulphatase (36.33-48.12 µg P-NP g-1 h-1), fluorescein diacetate hydrolase (12.18-21.59 µg g-1 h-1), bacterial count (67.67-123.33 CFU × 106 g-1), fungal count (19.33-67.00 CFU × 105 g-1), and actinomycetes count (12.00-42.33 CFU × 104 g-1), with the highest and lowest levels in forest soils and paddy-oilseed soils, respectively. Soil enzyme activities and microbial counts followed a pattern: forest > pasture > apple > saffron > paddy-oilseed at all three depths. Paddy-oilseed soils exhibited up to 35% lower enzyme activities than forest soils, implying that land conversion facilitates the depletion of microbiome diversity from surface soils. Additionally, reductions of 49.80% and 62.91% were observed in enzyme activity and microbial counts, respectively, with soil depth (from 0-30 to 60-90 cm). Moreover, the relationship analysis (principal component analysis and correlation) revealed a high and significant (p = 0.05) association between soil microbial and enzyme activities and physicochemical attributes. These results suggest that land conversions need to be restricted to prevent microbiome depletion, reduce the deterioration of natural resources, and ensure the sustainability of soil health.

Keywords: Arylsulphatase activity; Dehydrogenase activity; Ecosystem; Land use; Microbial population; Soil sustainability.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carbon Cycle*
  • Carbon* / analysis
  • Ecosystem*
  • Enzymes
  • Forests
  • India
  • Soil Microbiology*
  • Soil* / chemistry

Substances

  • Carbon
  • Soil
  • Enzymes

Grants and funding

This research was funded by the Central Public-Interest Scientific Institution Basal Research Fund (Farmland Irrigation Research Institute, CAAS, FIRI2022–09). The Scientific and Technological Project of Henan Province (222102110175) and the Scientific and Technological Project of Xinxiang City (GG2021024) supported the APC. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.