Dissolved gas analysis (DGA) is the most commonly used transformer fault diagnosis technology at present. In this paper, according to the method of first principles of density function theory (DFT), the gas-sensitive mechanisms of four oil-soluble characteristic gases (H2, CO, C2H2, C2H4) on intrinsic SnS2 and Cr3-SnS2 were studied. The adsorption energy and electron transfer were calculated, and the density of states, energy bands, and recovery times were analyzed. It was concluded that H2 and C2H4 were physisorbed on the Cr3-SnS2 monolayer, while CO and C2H2 were chemisorbed. It is believed that the Cr3-SnS2 material can be used in gas sensing for CO and C2H2. Cr3-SnS2 is expected to serve as a gas detector for the detection of CO with both a good response and reusability. Therefore, Cr3-SnS2 has very promising applications in the evaluation of the operation of oil-immersed transformers. This study will provide some help and inspiration for the development of the Cr3-SnS2 monolayer in gas-sensitive materials.