Discovering the Protective Effects of Quercetin on Aflatoxin B1-Induced Toxicity in Bovine Foetal Hepatocyte-Derived Cells (BFH12)

Toxins (Basel). 2023 Sep 6;15(9):555. doi: 10.3390/toxins15090555.

Abstract

Aflatoxin B1 (AFB1) induces lipid peroxidation and mortality in bovine foetal hepatocyte-derived cells (BFH12), with underlying transcriptional perturbations associated mainly with cancer, cellular damage, inflammation, bioactivation, and detoxification pathways. In this cell line, curcumin and resveratrol have proven to be effective in mitigating AFB1-induced toxicity. In this paper, we preliminarily assessed the potential anti-AFB1 activity of a natural polyphenol, quercetin (QUE), in BFH12 cells. To this end, we primarily measured QUE cytotoxicity using a WST-1 reagent. Then, we pre-treated the cells with QUE and exposed them to AFB1. The protective role of QUE was evaluated by measuring cytotoxicity, transcriptional changes (RNA-sequencing), lipid peroxidation (malondialdehyde production), and targeted post-transcriptional modifications (NQO1 and CYP3A enzymatic activity). The results demonstrated that QUE, like curcumin and resveratrol, reduced AFB1-induced cytotoxicity and lipid peroxidation and caused larger transcriptional variations than AFB1 alone. Most of the differentially expressed genes were involved in lipid homeostasis, inflammatory and immune processes, and carcinogenesis. As for enzymatic activities, QUE significantly reverted CYP3A variations induced by AFB1, but not those of NQO1. This study provides new knowledge about key molecular mechanisms involved in QUE-mediated protection against AFB1 toxicity and encourages in vivo studies to assess QUE's bioavailability and beneficial effects on aflatoxicosis.

Keywords: CYP3A; NQO1; aflatoxin B1; bovine; hepatocyte cell line; lipid peroxidation; quercetin; transcriptome.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aflatoxin B1 / toxicity
  • Animals
  • Cattle
  • Curcumin* / pharmacology
  • Cytochrome P-450 CYP3A
  • Hepatocytes
  • Liver
  • Quercetin* / pharmacology
  • Resveratrol / pharmacology

Substances

  • Quercetin
  • Resveratrol
  • Aflatoxin B1
  • Cytochrome P-450 CYP3A
  • Curcumin

Grants and funding

This research was supported by (i) a grant to Mauro Dacasto from the Italian Ministry of Education, Universities and Research (MIUR), Project of national interest (PRIN) 2015, “Effects of curcuminoids on the toxicity and mammary excretion of Aflatoxins (B1 and B2) and their metabolites in dairy cows”, (ii) a grant to Marianna Pauletto from the University of Padova (“DOR2019—prot. DOR1917008”).