Fusarium mycotoxins are inactivated by rumen flora; however, a certain amount can pass the rumen and reticulum or be converted into biological active metabolites. Limited scientific evidence is available on the impact and mitigation of Fusarium mycotoxins on dairy cows' performance and health, particularly when cows are exposed for an extended period (more than 2 months). The available information related to these mycotoxin effects on milk cheese-making parameters is also very poor. The objective of this study was to evaluate a commercially available mycotoxin mitigation product (MMP, i.e., TOXO® HP-R, Selko, Tilburg, The Netherlands) in lactating dairy cows fed a Fusarium mycotoxin-contaminated diet, and the repercussions on the dry matter intake, milk yield, milk quality, cheese-making traits and health status of cows. The MMP contains smectite clays, yeast cell walls and antioxidants. In the study, 36 lactating Holstein cows were grouped based on the number of days of producing milk, milk yield, body condition score and those randomly assigned to specific treatments. The study ran over 2 periods (March/May-May/July 2022). In each period, six animals/treatment were considered. The experimental periods consisted of 9 days of adaptation and 54 days of exposure. The physical activity, rumination time, daily milk production and milk quality were measured. The cows were fed once daily with the same total mixed ration (TMR) composition. The experimental groups consisted of a control (CTR) diet, with a TMR with low contamination, high moisture corn (HMC), and beet pulp; a mycotoxins (MTX) diet, with a TMR with highly contaminated HMC, and beet pulp; and an MTX diet supplemented with 100 g/cow/day of the mycotoxin mitigation product (MMP). The trial has shown that the use of MMP reduced the mycotoxin's negative effects on the milk yield and quality (protein, casein and lactose). The MTX diet had a lower milk yield and feed efficiency than the CTR and MMP HP-R diets. The MMP limited the negative effect of mycotoxin contamination on clotting parameters, mitigating the variations on some coagulation properties; however, the MMP inclusion tended to decrease the protein and apparent starch digestibility of the diet. These results provide a better understanding of mycotoxin risk on dairy cows' performances and milk quality. The inclusion of an MMP product mitigated some negative effects of the Fusarium mycotoxin contamination during this trial. The major effects were on the milk yield and quality in both the experimental periods. These results provide better insight on the effects of mycotoxins on the performance and quality of milk, as well as the cheese-making traits. Further analyses should be carried out to evaluate MMP's outcome on immune-metabolic responses and diet digestibility.
Keywords: animal; animal welfare; blood parameters; milk quality; mycotoxin.