A formate (HCOO-) bioanode was developed by utilizing a phenothiazine-based electropolymerized layer deposited on sucrose-derived carbon. The electrode modified with NAD-dependent formate dehydrogenase and the electropolymerized layer synergistically catalyzed the oxidation of the coenzyme (NADH) and fuel (HCOO-) to achieve efficient electron transfer. Further, the replacement of carbon nanotubes with water-dispersible sucrose-derived carbon used as the electrode base allowed the fabrication of a surfactant-free bioanode delivering a maximum current density of 1.96 mA cm-2 in the fuel solution. Finally, a separator- and surfactant-free HCOO-/O2 biofuel cell featuring the above bioanode and a gas-diffusion biocathode modified with bilirubin oxidase and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) was fabricated, delivering a maximum power density of 70 μW cm-2 (at 0.24 V) and an open-circuit voltage of 0.59 V. Thus, this study demonstrates the potential of formic acid as a fuel and possibilities for the application of carbon materials in bioanodes.
Keywords: biofuel cell; carbon; electropolymerization; formate; phenothiazine.