Sleep impairment and altered pattern of circadian biomarkers during a long-term Antarctic summer camp

Sci Rep. 2023 Sep 25;13(1):15959. doi: 10.1038/s41598-023-42910-8.

Abstract

Antarctic expeditions include isolation and exposure to cold and extreme photoperiods (with continuous natural light during summer) that may influence psychophysiological responses modulated by luminosity and sleep. We assessed changes in night sleep patterns by actigraphy, salivary biomarkers, and perceptual variables in seven participants in the following time points along a 50-day camping expedition in Antarctica (Nelson Island): Pre-Field (i.e., on the ship before camp), Field-1, Field-2, Field-3, Field-4 (from 1st to 10th, 11th to 20th, 21st to 35th and 36th to 50th days in camp, respectively), and Post-Field (on the ship after camp). We also characterized mood states, daytime sleepiness, and sleep quality by questionnaires. Staying in an Antarctic camp reduced sleep efficiency (5.2%) and increased the number of awakenings and wakefulness after sleep onset (51.8% and 67.1%, respectively). Furthermore, transient increases in time in bed (16.5%) and sleep onset latency (4.8 ± 4.0 min, from Pre- to Field-3) was observed. These changes were accompanied by an altered pattern of the emerging circadian marker β-Arrestin-1 and a trend to reduce nocturnal melatonin [57.1%; P = 0.066, with large effect size (ES) from Pre-Field to Field-2 (ES = 1.2) and Field-3 (ES = 1.2)]. All changes returned to Pre-Field values during the Post-Field. The volunteers reported sleep-related physical complaints (feeling of cold and pain, discomfort to breathe, and cough or loud snoring), excessive daytime sleepiness, and reduced vigor during the camp. Thus, a 50-day camp alters neuroendocrine regulation and induces physical discomfort, which may explain the impaired sleep pattern and the consequent daytime sleepiness and mood changes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antarctic Regions
  • Circadian Rhythm / physiology
  • Disorders of Excessive Somnolence*
  • Humans
  • Melatonin*
  • Sleep / physiology
  • Sleep Disorders, Circadian Rhythm*

Substances

  • Melatonin