Picorna-like viruses of the order Picornavirales are a poorly defined group of positive-sense, single-stranded RNA viruses that include numerous pathogens known to infect plants, animals, and insects. A new picorna-like viral species was isolated from the wild lime psyllid (WLP), Leuronota fagarae, in the state of Florida, USA, and labelled: Leuronota fagarae picorna-like virus isolate FL (LfPLV-FL). The virus was found to have homology to a picorna-like virus identified in the Asian Citrus Psyllid (ACP), Diaphorina citri, collected in the state of Florida. Computational analysis of RNA extracts from WLP adult heads identified a 10,006-nucleotide sequence encoding a 2,942 amino acid polyprotein with similar functional domain structure to polyproteins of both Dicistroviridae and Iflaviridae. Sequence comparisons of nucleic acid and amino acid translations of the conserved RNA-dependent RNA polymerase, along with the entire N-terminal nonstructural coding region, provided insight into an evolutionary relationship of LfPLV-FL to insect-infecting iflaviruses. Viruses belonging to the family Iflaviridae encode a polyprotein of around 3000 amino acids in length that is processed post-translationally to produce components necessary for replication. The classification of a novel picorna-like virus in L. fagarae, with evolutionary characteristics similar to picorna-like viruses infecting Bactericera cockerelli and D. citri, provides an opportunity to examine virus host specificity, as well as identify critical components of the virus' genome required for successful transmission, infection, and replication. This bioinformatic classification allows for further insight into a novel virus species, and aids in the research of a closely related virus of the invasive psyllid, D. citri, a major pest of Floridian citriculture. The potential use of viral pathogens as expression vectors to manage the spread D. citri is an area that requires additional research; however, it may bring forth an effective control strategy to reduce the transmission of Candidatus Liberibacter asiaticus (CLas), the causative agent of Huanglongbing (HLB).
Keywords: Huanglongbing; Insect virus; Leuronota; Picorna-like virus; Psyllid.
Copyright © 2023. Published by Elsevier Inc.