A clinically applicable AI system for diagnosis of congenital heart diseases based on computed tomography images

Med Image Anal. 2023 Dec:90:102953. doi: 10.1016/j.media.2023.102953. Epub 2023 Sep 6.

Abstract

Congenital heart disease (CHD) is the most common type of birth defect. Without timely detection and treatment, approximately one-third of children with CHD would die in the infant period. However, due to the complicated heart structures, early diagnosis of CHD and its types is quite challenging, even for experienced radiologists. Here, we present an artificial intelligence (AI) system that achieves a comparable performance of human experts in the critical task of classifying 17 categories of CHD types. We collected the first-large CT dataset from three different CT machines, including more than 3750 CHD patients over 14 years. Experimental results demonstrate that it can achieve diagnosis accuracy (86.03%) comparable with junior cardiovascular radiologists (86.27%) in a World Health Organization appointed research and cooperation center in China on most types of CHD, and obtains a higher sensitivity (82.91%) than junior cardiovascular radiologists (76.18%). The accuracy of the combination of our AI system (97.20%) and senior radiologists achieves comparable results to that of junior radiologists and senior radiologists (97.16%) which is the current clinical routine. Our AI system can further provide 3D visualization of hearts to senior radiologists for interpretation and flexible review, surgeons for precise intuition of heart structures, and clinicians for more precise outcome prediction. We demonstrate the potential of our model to be integrated into current clinic practice to improve the diagnosis of CHD globally, especially in regions where experienced radiologists can be scarce.

Keywords: Artificial intelligence; Computed tomography; Congenital heart disease; Deep learning; Diagnosis.