Objective: The lack of disease-specific autoantibodies in giant cell arteritis (GCA) suggests an alternative role for B-cells readily detected in the inflamed arteries. Here we study the cytokine profile of tissue infiltrated and peripheral blood B-cells of patients with GCA. Moreover, we investigate the macrophage skewing capability of B-cell-derived cytokines.
Methods: The presence of various cytokines in B-cell areas in temporal artery (n = 11) and aorta (n = 10) was identified by immunohistochemistry. PBMCs of patients with GCA (n = 11) and polymyalgia rheumatica (n = 10), and 14 age- and sex-matched healthy controls (HC) were stimulated, followed by flow cytometry for cytokine expression in B-cells. The skewing potential of B-cell-derived cytokines (n = 6 for GCA and HC) on macrophages was studied in vitro.
Results: The presence of IL-6, GM-CSF, TNFα, IFNγ, LTβ and IL-10 was documented in B-cells and B-cell rich areas of GCA arteries. In vitro, B-cell-derived cytokines (from both GCA and HC) skewed macrophages towards a pro-inflammatory phenotype with enhanced expression of IL-6, IL-1β, TNFα, IL-23, YKL-40 and MMP-9. In vitro stimulated peripheral blood B-cells from treatment-naïve GCA patients showed an enhanced frequency of IL-6+ and TNFα+IL-6+ B-cells compared to HCs. This difference was no longer detected in treatment-induced remission. Erythrocyte sedimentation rate positively correlated with IL-6+TNFα+ B-cells.
Conclusion: B-cells are capable of producing cytokines and steering macrophages towards a pro-inflammatory phenotype. Although the capacity of B-cells in skewing macrophages is not GCA specific, these data support a cytokine-mediated role for B-cells in GCA and provide grounds for B-cell targeted therapy in GCA.
Copyright © 2023 The Authors. Published by Elsevier Ltd.. All rights reserved.