Adipose-Derived Mesenchymal Stromal Cells Co-Cultured with Primary Mixed Glia to Reduce Prion-Induced Inflammation

J Vis Exp. 2023 Aug 11:(198). doi: 10.3791/65565.

Abstract

Mesenchymal stromal cells (MSCs) are potent regulators of inflammation through the production of anti-inflammatory cytokines, chemokines, and growth factors. These cells show an ability to regulate neuroinflammation in the context of neurodegenerative diseases such as prion disease and other protein misfolding disorders. Prion diseases can be sporadic, acquired, or genetic; they can result from the misfolding and aggregation of the prion protein in the brain. These diseases are invariably fatal, with no available treatments. One of the earliest signs of disease is the activation of astrocytes and microglia and associated inflammation, which occurs prior to detectable prion aggregation and neuronal loss; thus, the anti-inflammatory and regulatory properties of MSCs can be harvested to treat astrogliosis in prion disease. Recently, we showed that adipose-derived MSCs (AdMSCs) co-cultured with BV2 cells or primary mixed glia reduce prion-induced inflammation through paracrine signaling. This paper describes a reliable treatment using stimulated AdMSCs to decrease prion-induced inflammation. A heterozygous population of AdMSCs can easily be isolated from murine adipose tissue and expanded in culture. Stimulating these cells with inflammatory cytokines enhances their ability to both migrate toward prion-infected brain homogenate and produce anti-inflammatory modulators in response. Together, these techniques can be used to investigate the therapeutic potential of MSCs on prion infection and can be adapted for other protein misfolding and neuroinflammatory diseases.

Publication types

  • Video-Audio Media

MeSH terms

  • Animals
  • Cytokines
  • Inflammation
  • Mesenchymal Stem Cells*
  • Mice
  • Neuroglia
  • Prions*

Substances

  • Prions
  • Cytokines