Ethnopharmacological relevance: Buyang Huanwu Decoction (BYHWD), as a traditional Chinese medical prescription, has been used to treat intracerebral hemorrhage (ICH) for hundreds of years, but the antiapoptotic properties have not yet been studied.
Aim of the study: This study aims to elucidate the antiapoptotic mechanism of BYHWD in ICH.
Materials and methods: The therapeutic effect of BYHWD on ICH was assessed by modified neurological severity scores (mNSS), foot fault, and histopathological staining. Then, we used a modified comprehensive strategy by integrating transcriptome and network pharmacology to reveal the underlying mechanism. TUNEL assay, qRT-PCR, and western blot were further applied to evaluate the antiapoptotic effect of BYHWD on ICH. Dual-luciferase reporter assay and plasmid transfections were implemented to validate the potential competing endogenous RNAs (ceRNA) mechanism of Sh2b3.
Results: Network pharmacology analysis indicated that the regulation of the apoptotic process was the highest enriched GO term, and that MAP kinase activity, ERK1, and ERK2 cascade were strongly correlated. Transcriptome analysis screened 180 differentially expressed mRNAs, which were highly enriched in the immune system process and negative regulation of programmed cell death. By checking the literature, we found that Sh2b3 was of great importance to apoptosis by modulating MAPK cascades. TUNEL assay validated the anti-apoptotic effect of BYHWD. Moreover, BYHWD was proven to regulate the Sh2b3-mediated ERK1/2 signaling pathway in ICH mice by qRT-PCR and western blot. We further explored the lncRNA-miRNA-mRNA network underlying the therapeutic effect, among which 4933404O12Rik/miR-185-5p is the upstream regulatory mechanism of Sh2b3.
Conclusions: We explored the antiapoptotic mechanism of BYHWD in treating ICH by a novel integrated strategy, which involved the 4933404O12Rik/miR-185-5p/Sh2b3 ceRNAs axis.
Keywords: Central nervous system; Competing endogenous RNAs; ERK1/2; Sh2b3; Traditional Chinese medicine.
Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.