Insights to PFOS elimination with peroxydisulfate activation mediated by boron modified Fe/C catalysts: Enhancing mechanism of boron and PFOS degradation pathway

J Colloid Interface Sci. 2023 Dec 15;652(Pt B):1743-1755. doi: 10.1016/j.jcis.2023.08.198. Epub 2023 Sep 1.

Abstract

In this study, the boron-doped iron-carbon composite (Fe@B/C-2) was prepared via a simple solvothermal and secondary calcination process by using iron metal-organic frameworks (Fe-MOFs) as precursor. The obtained Fe@B/C-2 possessed abundant active sites and low iron ion leaching, and exhibited excellent performance on peroxydisulfate (PDS) activation for efficient PFOS (10 mg/L) degradation (94 %) in 60 min, with 0.2 g/L of catalyst dosage, 1.0 g/L of PDS dosage and at 5.0 of initial pH. The radical scavenging and electron paramagnetic resonance (EPR) tests demonstrated that SO4·- and ·OH were the primary active species during PFOS elimination. Under the attack of these species, PFOS was first transformed into PFOA, followed by a sequential defluorination process, and lastly mineralized into CO2 and F-. Notably, DFT results revealed that Fe species, -BC3/-BC2O structures on the carbon matrix performed crucial roles in PDS activation. The extraordinary catalytic activity of Fe@B/C-2 was attributable to the synergistic effects of Fe nanoparticles and the B-doped on carbon matrix. The doped B not only could activate the inert carbon skeleton and provided more catalytic centers, but also could accelerate the electron transfer efficiency, leading to a boost in PDS decomposition.

Keywords: Boron-doping; Degradation; Fe-based catalyst; Perfluorooctane sulfonic acid; Peroxydisulfate activation.