Bacillus Calmette-Guérin vaccine is well known for inducing trained immunity in myeloid and natural killer cells, which can explain its cross-protective effect against heterologous infections. Although displaying functional characteristics of both adaptive and innate immunity, γδ T-cell memory has been only addressed in a pathogen-specific context. In this study, we aimed to determine whether human γδ T cells can mount trained immunity and therefore contribute to the cross-protective effect of the Bacillus Calmette-Guérin vaccine. We investigated in vivo induction of innate memory in γδ T cells by Bacillus Calmette-Guérin vaccination in healthy human volunteers by combining single-cell RNA sequencing technology with immune functional assays. The total number of γδ T cells and membrane markers of activation was not influenced by Bacillus Calmette-Guérin vaccination. In contrast, Bacillus Calmette-Guérin changed γδ T cells' transcriptional programs and increased their responsiveness to heterologous bacterial and fungal stimuli, including lipopolysaccharide and Candida albicans, as simultaneously characterized by higher tumor necrosis factor and interferon γ production, weeks after vaccination. Human γδ T cells in adults display the potential to develop a trained immunity phenotype after Bacillus Calmette-Guérin vaccination.
Keywords: BCG vaccine; immune memory; trained immunity; γδ T cells.
© The Author(s) 2023. Published by Oxford University Press on behalf of Society for Leukocyte Biology.