Eicosapentaenoic acid metabolites promotes the trans-differentiation of pancreatic α cells to β cells

Biochem Pharmacol. 2023 Oct:216:115775. doi: 10.1016/j.bcp.2023.115775. Epub 2023 Sep 1.

Abstract

Type 1 diabetes mellitus (T1DM) is characterized by life-threatening absolute insulin deficiency. Although ω-3 polyunsaturated fatty acids (PUFAs) displayed significant anti-hyperglycemic activity, the insulinotropic effects of their metabolites remain unknown. In this study, we took advantage of a transgenic model, mfat-1, that overexpresses an ω-3 desaturase and can convert ω-6 PUFAs to ω-3 PUFAs. Eicosapentaenoic acid (EPA) was sharply elevated in the pancreatic tissues of mfat-1 transgenic mice compared with wild-type (WT) mice. In contrast to the WT mice, the mfat-1 transgenics did not develop overt diabetes and still maintained normal blood glucose levels and insulin secretion following streptozotocin-treatment. Furthermore, under the condition of pancreatic β-cell damage, co-incubation of the metabolites of EPA produced from the CYP 450 pathway with isolated islets promoted the overexpression of insulin as well as β-cell specific markers, pdx1 and Nkx6.1 in pancreatic α-cells. Addition of EPA metabolites to the cultured glucagon-positive α-cell lines, a series of pancreatic β-cell markers were also found significantly elevated. Combined together, these results demonstrated the effects of ω-3 PUFAs and their metabolites on the trans-differentiation from α-cells to β-cells and its potential usage in the intervention of T1DM.

Keywords: Eicosapentaenoic acid; Pancreatic alpha cells; Pancreatic beta cells; Trans-differentiation; Type 1 diabetes mellitus; ω-3 polyunsaturated fatty acids.