The Bay of Bengal (BoB) is the largest sink to retain discharges from major rivers and the Sundarbans Mangrove Forest in Bangladesh and upholds significant ecological and resource diversity. This study aims to characterize, and identify sources, spatial dynamics, and the fate of the principal ecological web driver that is fluorescent dissolved organic matter (FDOM) in the BoB using advanced techniques of excitation-emission matrix (EEM) fluorescence spectroscopy and multivariate parallel factor (PARAFAC) analyses. The identified four protein-, two humic- and one detergent-like FDOM components mostly showed higher abundance in the shallow water than deep unlike a protein-like component. Such exceptional protein-like component was identified to form colloidal structure under elevated salinity in deep water. Autochthonous humic-like FDOM originated from primary production and water temperature counteracted microbial polymerization in shallow and deep water, respectively. The annual mass deposition indicated the influx of anthropogenic pollutants from both terrestrial and internal marine systems.
Keywords: Anthropogenic pollutants; Bay of Bengal; Excitation-emission matrix; Fluorescence spectroscopy; Parallel factor analysis.
Copyright © 2023 Elsevier Ltd. All rights reserved.