The present study was designed to establish a suitable alternative approach to mitigate the adverse effect of high culture temperature on in vitro embryo development and the related molecular response in buffalo. Pre-cultured granulosa cells (GCs) were used as a monolayer during in vitro embryo culture until day 8 (day of fertilization = D0). Post fertilization, presumptive embryos were randomly assigned into two culture conditions: embryos cultured in the presence of GCs monolayer under normal culture temperature (N: 38.5 °C; GEN group) or heat shock (H: 40.5 °C; GEH group) and their counterpart groups of embryos cultured without GCs (EN and EH groups). Additionally, two groups of GCs monolayer were cultured without embryos up to day 8 under 38.5 °C (GN) or 40.5 °C (GH) for further spent culture media enzymatic analyses. Heat shock was administered for the first 2 h of culture then continued at 38.5 °C until day 8. The results indicated that under heat treatment, GCs enhanced (P ≤ 0.05) embryo cleavage and development (day 8) rates, which were comparable to the embryos cultured at 38.5 °C. On the molecular level, blastocysts of the GEH group showed similar expressions of metabolism-regulating genes (CPT2 and SlC2A1/GLUT1) and an antioxidant gene (SOD2) when compared to the blastocysts of the EN group. The relative expression of HSP90 was significantly up-regulated under heat shock and/or co-culture conditions. However, HSF1 expression was increased (P ≤ 0.05) in the GEH group. No statistical differences were observed among the study groups for the pluripotency gene NANOG, and stress resistance transcript NFE2L2. Regarding the enzymatic profile, the concentrations of SOD, total protein, and MDA were decreased (P ≤ 0.05) in the GEH group compared to the cultured GCs without embryos (GH group). In conclusion, GCs as a monolayer have a beneficial impact on alleviating heat stress at the zygote stage through the regulatory mechanisms of metabolic activity, defense system, and heat shock response genes.
Keywords: Buffalo embryo; Co-culture; Enzymatic activity; Gene expression; Granulosa cells; Heat shock.
Copyright © 2023. Published by Elsevier Inc.