Rationale: The contribution of norepinephrine on the different phases of spatial memory processing remains incompletely understood. To address this gap, this study depleted norepinephrine in the brain and then conducted a spatial learning task with multiple phases.
Methods: Male and female Wistar rats were administered 50 mg/kg/i.p. of DSP-4 (N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine) to deplete norepinephrine. After 10 days, rats were trained on a 20-hole Barnes maze spatial navigation task for 5 days. On the fifth day, animals were euthanized and HPLC was used to confirm depletion of norepinephrine in select brain regions. In Experiment 2, rats underwent a similar Barnes maze procedure that continued beyond day 5 to investigate memory retrieval and updating via a single probe trial and two reversal learning periods.
Results: Rats did not differ in Barnes maze acquisition between DSP-4 and saline-injected rats; however, initial acquisition differed between the sexes. HPLC analysis confirmed selective depletion of norepinephrine in dorsal hippocampus and cingulate cortex without impact to other monoamines. When retrieval was tested through a probe trial, DSP-4-improved memory retrieval in males but impaired it in females. Cognitive flexibility was transiently impacted by DSP-4 in males only.
Conclusions: Despite significantly reducing levels of norepinephrine, DSP-4 had only a modest impact on spatial learning and behavioral flexibility. Memory retrieval and early reversal learning were most affected and in a sex-specific manner. These data suggest that norepinephrine has sex-specific neuromodulatory effects on memory retrieval with a lesser effect on cognitive flexibility and no impact on acquisition of learned behavior.
Keywords: Barnes maze; Behavioral flexibility; DSP-4; Female; HPLC; Hippocampus; Norepinephrine; Retrieval; Sex; Spatial memory.
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.