Distinct circuits in anterior cingulate cortex encode safety assessment and mediate flexibility of fear reactions

Neuron. 2023 Nov 15;111(22):3650-3667.e6. doi: 10.1016/j.neuron.2023.08.008. Epub 2023 Aug 30.

Abstract

Safety assessment and threat evaluation are crucial for animals to live and survive in the wilderness. However, neural circuits underlying safety assessment and their transformation to mediate flexibility of fear-induced defensive behaviors remain largely unknown. Here, we report that distinct neuronal populations in mouse anterior cingulate cortex (ACC) encode safety status by selectively responding under different contexts of auditory threats, with one preferably activated when an animal staysing in a self-deemed safe zone and another specifically activated in more dangerous environmental settings that led to escape behavior. The safety-responding neurons preferentially target the zona incerta (ZI), which suppresses the superior colliculus (SC) via its GABAergic projection, while the danger-responding neurons preferentially target and excite SC. These distinct corticofugal pathways antagonistically modulate SC responses to threat, resulting in context-dependent expression of fear reactions. Thus, ACC serves as a critical node to encode safety/danger assessment and mediate behavioral flexibility through differential top-down circuits.

Keywords: anterior cingulate cortex; auditory threat; defensive behavior; safety assessment; superior colliculus.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Fear / physiology
  • Gyrus Cinguli*
  • Mice
  • Superior Colliculi / physiology
  • Zona Incerta*