DNA mimic foldamers affect chromatin composition and disturb cell cycle progression

Nucleic Acids Res. 2023 Oct 13;51(18):9629-9642. doi: 10.1093/nar/gkad681.

Abstract

The use of synthetic chemicals to selectively interfere with chromatin and the chromatin-bound proteome represents a great opportunity for pharmacological intervention. Recently, synthetic foldamers that mimic the charge surface of double-stranded DNA have been shown to interfere with selected protein-DNA interactions. However, to better understand their pharmacological potential and to improve their specificity and selectivity, the effect of these molecules on complex chromatin needs to be investigated. We therefore systematically studied the influence of the DNA mimic foldamers on the chromatin-bound proteome using an in vitro chromatin assembly extract. Our studies show that the foldamer efficiently interferes with the chromatin-association of the origin recognition complex in vitro and in vivo, which leads to a disturbance of cell cycle in cells treated with foldamers. This effect is mediated by a strong direct interaction between the foldamers and the origin recognition complex and results in a failure of the complex to organise chromatin around replication origins. Foldamers that mimic double-stranded nucleic acids thus emerge as a powerful tool with designable features to alter chromatin assembly and selectively interfere with biological mechanisms.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biomimetics*
  • Cell Cycle
  • Chromatin
  • Chromatin Assembly and Disassembly* / drug effects
  • Chromosomal Proteins, Non-Histone / metabolism
  • DNA
  • DNA Replication
  • Drosophila
  • Embryo, Nonmammalian / chemistry
  • Origin Recognition Complex / metabolism
  • Proteome

Substances

  • Chromatin
  • DNA
  • Origin Recognition Complex
  • Proteome
  • Chromosomal Proteins, Non-Histone