Behavioral and endocrine responses to noninteractive live and video conspecifics in males of the Siamese fighting fish

Curr Zool. 2022 Oct 8;69(5):568-577. doi: 10.1093/cz/zoac078. eCollection 2023 Oct.

Abstract

The physiological mechanisms underlying variation in aggression in fish remain poorly understood. One possibly confounding variable is the lack of standardization in the type of stimuli used to elicit aggression. The presentation of controlled stimuli in videos, a.k.a. video playback, can provide better control of the fight components. However, this technique has produced conflicting results in animal behavior studies and needs to be carefully validated. For this, a similar response to the video and an equivalent live stimulus needs to be demonstrated. Further, different physiological responses may be triggered by live and video stimuli, and it is important to demonstrate that video images elicit appropriate physiological reactions. Here, the behavioral and endocrine responses of male Siamese fighting fish Betta splendens to a matched-for-size conspecific fighting behind a one-way mirror, presented live or through video playback, were compared. The video playback and live stimulus elicited a strong and similar aggressive response by the focal fish, with a fight structure that started with stereotypical threat displays and progressed to overt attacks. Postfight plasma levels of the androgen 11-ketotestosterone were elevated as compared to controls, regardless of the type of stimuli. Cortisol also increased in response to the video images, as previously described for live fights in this species. These results show that the interactive component of a fight and its resolution are not needed to trigger an endocrine response to aggression in this species. The study also demonstrates for the first time in a fish a robust endocrine response to video stimuli and supports the use of this technique for researching aggressive behavior in B. splendens.

Keywords: Betta splendens; aggression; androgens; corticosteroids; one-way mirror; video playback.