In this paper, we report the synthesis of acrylamide hydrogels (net-AAm) reinforced with cellulose nanocrystals (CNCs) using gamma radiation, a powerful tool to obtain crosslinked polymers without the use of chemical initiators and crosslinking agents. Some slight changes in the chemical structure and crystallinity of CNCs took place during gamma irradiation without affecting the nanofiller function. In fact, cellulose nanocrystals had a notable influence over the swelling and mechanical properties on the reinforced hydrogels (net-AAm/CNC), obtaining more rigid material since the Young compression modulus increased from 11 kPa for unreinforced net-AAm to 30 kPa for net-AAm/CNC (4% w/w). Moreover, the studies of retention and release of ciprofloxacin (Cx), a quinolone antibiotic drug, showed that reinforced hydrogels were able to load large amounts of ciprofloxacin (1.2-2.8 mg g-1) but they distributed 100% of the drug very quickly (<100 min). Despite this, they exhibited better mechanical properties than the control sample, allowing their handling, and could be used as wound dressings of first response because they can absorb the exudate and at the same time deliver an antibiotic drug directly over the injury.
Keywords: AAm hydrogels; cellulose nanocrystals; crosslinking; gamma radiation; nanocomposites.