Glucose metabolism in posterior cingulate cortex has supplementary value to predict the progression of cognitively unimpaired to dementia due to Alzheimer's disease: an exploratory study of 18F-FDG-PET

Geroscience. 2024 Feb;46(1):1407-1420. doi: 10.1007/s11357-023-00897-0. Epub 2023 Aug 23.

Abstract

Amyloid-β (Aβ) and tau are important biomarkers to predict the progression of cognitively unimpaired (CU) to dementia due to Alzheimer's disease (AD), according to the diagnosis framework from the US National Institute on Aging and the Alzheimer's Association (NIA-AA). However, it is clinically difficult to predict those subjects who were already with Aβ positive (A +) or tau positive (T +). As a typical characteristic of neurodegeneration in the diagnosis framework, the hypometabolism of the posterior cingulate cortex (PCC) has significant clinical value in the early prediction and prevention of AD. In this paper, we proposed the glucose metabolism in the PCC as a biomarker supplement to Aβ and tau biomarkers. First, we calculated the standard uptake value ratio (SUVR) of PCC based on fluorodeoxyglucose positron emission computed tomography (FDG PET) imaging. Secondly, we performed Kaplan-Meier (KM) survival analyses to explore the predictive performance of PCC SUVR, and the hazard ratio (HR) was calculated. Finally, we performed Pearson correlation analyses to explore the physiological significance of PCC SUVR. As a result, the PCC SUVR showed a consistent downward trend along the AD continuum. KM analyses showed better predictive performance when we combined PCC SUVR with cerebro-spinal fluid (CSF) Aβ42 (from HR = 2.56 to 3.00 within 5 years; from HR = 2.76 to 4.20 within 10 years) and ptau-181 (from 2.83 to 3.91 within 5 years; from HR = 2.32 to 4.17 within 10 years). There was a slight correlation between Aβ42/Aβ40 and PCC SUVR (r = 0.14, p = 0.02). In addition, several cognition scales were also correlated to PCC SUVR (from r = -0.407 to 0.383, p < 0.05). Our results showed that glucose metabolism in PCC may be a potential biomarker supplement to the Aβ and tau biomarkers to predict the progression of CU to AD.

Keywords: Cognitively unimpaired; FDG PET; Kaplan–Meier analysis; Neurodegeneration; Posterior cingulate cortex.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Alzheimer Disease* / diagnostic imaging
  • Alzheimer Disease* / metabolism
  • Amyloid beta-Peptides / metabolism
  • Biomarkers / metabolism
  • Fluorodeoxyglucose F18 / metabolism
  • Glucose / metabolism
  • Gyrus Cinguli / diagnostic imaging
  • Gyrus Cinguli / metabolism
  • Humans

Substances

  • Fluorodeoxyglucose F18
  • Amyloid beta-Peptides
  • Biomarkers
  • Glucose