Somatosensory cortex microstimulation modulates primary motor and ventral premotor cortex neurons with extensive spatial convergence and divergence

bioRxiv [Preprint]. 2023 Dec 28:2023.08.05.552025. doi: 10.1101/2023.08.05.552025.

Abstract

Intracortical microstimulation (ICMS) is known to affect distant neurons transynaptically, yet the extent to which ICMS pulses delivered in one cortical area modulate neurons in other cortical areas remains largely unknown. Here we assessed how the individual pulses of multi-channel ICMS trains delivered in the upper extremity representation of the macaque primary somatosensory area (S1) modulate neuron firing in the primary motor cortex (M1) and in the ventral premotor cortex (PMv). S1-ICMS pulses modulated the majority of units recorded both in the M1 upper extremity representation and in PMv, producing more inhibition than excitation. Effects converged on individual neurons in both M1 and PMv from extensive S1 territories. Conversely, effects of ICMS delivered in a small region of S1 diverged to wide territories in both M1 and PMv. The effects of this direct modulation of M1 and PMv neurons produced by multi-electrode S1-ICMS like that used here may need to be taken into account by bidirectional brain-computer interfaces that decode intended movements from neural activity in these cortical motor areas.

Significance statement: Although ICMS is known to produce effects transynaptically, relatively little is known about how ICMS in one cortical area affects neurons in other cortical areas. We show that the effects of multi-channel ICMS in a small patch of S1 diverge to affect neurons distributed widely in both M1 and PMv, and conversely, individual neurons in each of these areas can be affected by ICMS converging from much of the S1 upper extremity representation. Such direct effects of ICMS may complicate the decoding of motor intent from M1 or PMv when artificial sensation is delivered via S1-ICMS in bidirectional brain-computer interfaces.

Publication types

  • Preprint