Three nitrophenols are among the 126 priority toxic pollutants identified by the US Environmental Protection Agency. Catalyzing hydrogenation is a simple way to convert these toxic nitrophenols into harmless aminophenols. Commercial PdC has excellent catalytic hydrogenation activity but has weaknesses such as high price and low reusability. Here, we fabricated a series of nano-Pd 2D Co-MOF heterostructures and filtered for optimal Co-MOF@Pd0.0012, which contain ultra-low Pd content (0.08 wt%) and recorded high catalytic efficiency for 4-nitrophenol among the reported non-single atom catalyst due to edge and size effects. The TOF value of Co-MOF@Pd0.0012 is 9800 h-1, ∼206 times higher than that of PdC (Pd content, 10 wt%). Furthermore, Co-MOF@Pd0.0012 has been widely applied to catalyze the reduction of various nitrophenol substrates with higher than 99% conversion efficiency and selectivity.
Keywords: 4-Nitrophenol; Catalytic reduction; Edge and size effects; Palladium nanoparticles; Two-dimensional metal–organic frame.
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.