Embryogenesis and epigenetic mechanisms of lncRNA may play an important role in the formation of temperature tolerance in allotetraploid Cyprinus carpio. To investigate the response of lncRNA to thermal stress during embryogenesis of C. carpio, transcriptome sequencing was performed on 81 embryo or larva samples from different early development stages and temperatures. We identified 45,097 lncRNAs and analyzed transcriptome variation during embryogenesis. Stage-specific and temperature-specific DE lncRNAs and DEGs were screened. GO and KEGG analysis identified numerous pathways involved in thermal stress. Temperature-specific regulation of cis-/trans-/antisense lncRNAs was analyzed. Interaction network analysis identified 6 hub lncRNAs and many hub genes, such as cdk1 and hsf1. Decreased expression of many essential genes regulated by lncRNAs may lead to the death of embryos at 33 °C. Our findings provide new insights into the regulation of lncRNA in thermal stress response during embryogenesis and contribute to the understanding of environmental adaptation of allotetraploid species.
Keywords: Cyprinus carpio; Embryogenesis; Long non-coding RNAs (lncRNAs); Thermal stress.
Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.