Low back pain is associated with changes in trunk muscle structure and function and motor control impairments. Voluntary force modulation (FM) of trunk muscles is a unique and under-investigated motor control characteristic. One of the reasons for this paucity of evidence is the lack of exploration and publication on the reliability and validity of trunk FM protocols. The purpose of this study was to determine the within- and between-day test-retest reliability and construct validity for trunk extensor muscle FM. Twenty-nine healthy participants were tested under three FM conditions with different modulation rates. Testing was performed on a custom-built apparatus designed for trunk isometric force testing. FM accuracy relative to a fluctuating target force (20-50%MVF) was quantified using the root mean square error of the participant's generated force relative to the target force. Reliability and precision of measurement were assessed using the Intraclass Correlation Coefficient (ICC), standard error of measurement (SEM), minimal detectable difference (MDD95), and Bland-Altman plots. In a subset of participants, we collected surface electromyography of trunk and hip muscles. We used non-negative matrix factorization (NNMF) to identify the underlying motor control strategies. Within- and between-day test-retest reliability was excellent for FM accuracy across the three conditions (ICC range: 0.865 to 0.979). SEM values ranged 0.9-1.8 Newtons(N) and MDD95 ranged from 2.4-4.9N. Conditions with faster rates of FM had higher ICCs. NNMF analysis revealed two muscle synergies that were consistent across participants and conditions. These synergies demonstrate that the muscles primarily involved in this FM task were indeed the trunk extensor muscles. This protocol can consistently measure FM accuracy within and between testing sessions. Trunk extensor FM, as measured by this protocol, is not specific to any trunk muscle group but is the result of modulation by all the trunk extensor muscles.
Copyright: © 2023 Gilliam et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.