Controlling the structure and properties of catalysts through atomic arrangement is the source of producing a new generation of advanced catalysts. A highly active and stable catalyst in catalytic reactions strongly depends on an ideal arrangement structure of metal atoms. We demonstrated that the introduction of the defect-rich structures, low coordination number (CN), and tensile strain in three-dimensional (3D) urchin-like palladium nanoparticles through chlorine bonded with sp-C in graphdiyne (Pd-UNs/Cl-GDY) can regulate the arrangement of metal atoms in the palladium nanoparticles to form a special structure. In situ Fourier infrared spectroscopy (FTIR) and theoretical calculation results show that Pd-UNs/Cl-GDY catalyst is beneficial to the oxidation and removal of CO intermediates. The Pd-UNs/Cl-GDY for methanol oxidation reaction (MOR) that display high current density (363.6 mA cm-2 ) and mass activity (3.6 A mgPd -1 ), 12.0 and 10.9 times higher than Pd nanoparticles, respectively. The Pd-UNs/Cl-GDY catalyst also exhibited robust stability with still retained 95 % activity after 2000 cycles. A defects libraries of the face-centered cubic and hexagonal close-packed crystal catalysts (FH-NPs) were synthesized by introducing chlorine in graphdiyne. Such defect-rich structures, low CN, and tensile strain tailoring methods have opened up a new way for the catalytic reaction of MOR.
Keywords: 2D Carbon Allotrope; Defect-Rich Structures; Electrocatalyst; Graphdiyne; Methanol Oxidation Reaction.
© 2023 Wiley-VCH GmbH.