Pyroptosis has been identified as a pro-inflammatory form of programmed cell death. It can be triggered by different stimuli including pathogen invasion or cell stress/danger signals releasing hundreds of proteins upon lysis that cause complex responses in neighboring cells. Pyroptosis is executed by the gasdermin (GSDM) family of proteins which, upon cleavage by caspases, form transmembrane pores that release cytokines to induce inflammation. However, despite the importance of gasdermins in the development of inflammatory diseases and cancer, a lot is still to be understood in the downstream consequences of this cell death pathway. Currently, conventional methods, such as drug treatments or chemically forced oligomerization, are limited in the spatiotemporal analysis of pyroptosis signaling in the cellular population, since all cells are primed for undergoing pyroptosis. Here, we provide a protocol for the application of a novel optogenetics tool called NLS_PhoCl_N-GSDMD_mCherry that enables precise temporal and spatial pyroptosis induction in a confocal microscopy setup, followed by imaging of the cell death process and subsequent quantitative analysis of the experiment. This tool opens new opportunities for the study of pyroptosis activation and of its effects on the bystander cell responses.
Keywords: Bystander cell responses; Optogenetics; Pyroptosis.
© 2023. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.