Several biochemical reactions occur during the interaction of metal complexes and proteins due to conformational modifications in the structure of the protein, which provide fundamental knowledge of the effect, mechanism, and transport of many drugs throughout the body. Here, we report the synthesis, identification, and impact of the 3-dimensional Copper(II)sulfanilic acid coordination polymer (CP 1) on interactions with bovine serum albumin (BSA). The CP 1 was synthesized via a simple hot stirring method, and the single crystal XRD confirms the effective bonding interactions between metal and organic ligand, forming a crystalline polymeric chain and the topological study shows the sql type of underlying net topology. Powder XRD, Fourier transform infrared spectroscopy, and thermogravimetric analysis were also performed. Moreover, DFT/B3LYP calculations provide chemical precision for the resulting complex. Further, the changes that occur in the secondary structure of protein when CP 1 binds with BSA as well as its binding capacity were investigated via circular dichroism analysis and spectroscopic methods such as UV-absorption spectroscopy and fluorescence spectroscopy, respectively. The CP 1/BSA complex melting point was also measured, and its temperature-dependent heat denaturation was studied along with molecular docking.Communicated by Ramaswamy H. Sarma.
Keywords: Coordination complex; Copper(II)sulfanilic acid; binding sites; bovine serum albumin; protein binding.