Objectives: Jumping ability has been identified as a key factor that influences the performance of badminton athletes. Autoregulatory progressive resistance exercise (APRE) and velocity-based resistance training (VBRT) are commonly used approaches to enhance muscle strength and have been shown to accurately monitor the development of explosive power to improve jumping ability. This study aims to investigate the effects of APRE and VBRT on badminton athletes' jumping ability and to provide practical insights into improving their jumping performance during competitions.
Methods: Upon completing familiarization and pretesting, 18 badminton athletes were included and completed the training intervention (age, 21.4 ± 1.4 years; stature, 170.1 ± 7.3 cm; body mass, 65.9 ± 12 kg); they were randomly divided into the APRE group (n = 9) and VBRT group (n = 9). Jumping performance was assessed during the countermovement jump (CMJ), squat jump (SJ), and drop jump (DJ) via SmartJump, with CMJ 's and SJ's jump height, eccentric utilization ratio (EUR), and reactive strength index (RSI). All participants then completed a 4-week in-season resistance training intervention.
Results: (1) The results of the within-group indicated that only the CMJ (pre: 41.56 ± 7.84 vs post: 43.57 ± 7.85, p < 0.05) of the APRE group had significant differences, whereas the SJ, EUR, and RSI were not significantly different (p > 0.05). (2) The results of the intergroups revealed that all indicators had no significant differences (p > 0.05), but APRE had a moderate effect size on the improvement of the CMJ (η2 = 0.244) and EUR (η2 = 0.068) when compared with VBRT.
Conclusions: The results showed that, compared to VBRT, APRE can effectively improve the performance of the reactive athletes' lower limb explosive power in the CMJ in a shorter period of time. The findings indicate that APRE may be useful for coaches seeking to improve the CMJ performance of athletes in the short term.
Keywords: Autoregulating progressive resistance exercise; Jumping ability; Velocity-based resistance training.
© 2023 Huang et al.