Amphid wing "C" (AWC) neurons are among the most important and studied neurons of the nematode Caenorhabditis elegans. In this work, we unify the existing electrical and intracellular calcium dynamics descriptions to obtain a biophysically accurate model of olfactory transduction in AWCON neurons. We study the membrane voltage and the intracellular calcium dynamics at different exposure times and odorant concentrations to grasp a complete picture of AWCON functioning. Moreover, we investigate the complex cascade of biochemical processes that allow AWC activation upon odor removal. We analyze the behavior of the different components of the models and, by suppressing them selectively, we extrapolate their contribution to the overall neuron response and study the resilience of the dynamical system. Our results are all in agreement with the available experimental data. Therefore, we provide an accurate mathematical and biophysical model for studying olfactory signal processing in C. elegans.
Keywords: C. elegans; AWCON neurons; olfaction modeling.
© 2023 the author(s), published by De Gruyter.