Histological response to radiotherapy is an early event in myxoid liposarcoma

Virchows Arch. 2023 Oct;483(4):487-495. doi: 10.1007/s00428-023-03615-5. Epub 2023 Aug 12.

Abstract

Compared to other sarcomas, myxoid liposarcoma (MLS) is exceptionally sensitive to radiation therapy, but the underlying mechanism remains unknown. The objective was to assess the tissue-based changes in MLS during and after neoadjuvant radiotherapy in 26 patients of the DOREMY trial. Morphological assessment was performed on biopsies pre-treatment, after 8 fractions, 16 factions, and after surgical resection and included percentage of viable tumor cells, hyalinization, necrosis, and fatty maturation. Furthermore, immunohistochemistry was performed for apoptosis (cleaved caspase-3), anti-apoptosis (Bcl-2), activity of mTOR signaling (phospho-S6), hypoxia (CAIX), proliferation (Ki67), inflammation (CD45 and CD68), and microvessel density (CD34 Chalkley count). A pronounced reduction in vital tumor cells was observed early with a drop to 32.5% (median) tumor cells (IQR 10-93.8%) after 8 fractions. This decreased further to 10% (IQR 5-30%) after 16 fractions and 7.5% (IQR 5-15%) in the surgical specimen. All but one patient had an excellent response with < 50% remaining tumor cells. Inversely, treatment response was mainly observed as hyalinization and less often as fatty maturation. Additionally, a decrease of inflammatory cells was noticed especially during the first eight fractions. Microvessel density remained stable over time. Immunohistochemical markers for apoptosis, anti-apoptosis, activity of mTOR signaling, proliferation, and hypoxia did not show any marked changes within the remaining tumor cells during and after radiotherapy. As a modest dose of neoadjuvant radiotherapy induces profound tissue changes in MLS, mainly during the first 8 fractions, current findings might suggest that in a carefully selected patient population further deintensification of radiotherapy might be explored.

Keywords: Myxoid liposarcoma; Personalized medicine; Radiotherapy.

MeSH terms

  • Adult
  • Apoptosis
  • Humans
  • Hypoxia
  • Liposarcoma, Myxoid* / radiotherapy
  • Neoadjuvant Therapy
  • TOR Serine-Threonine Kinases

Substances

  • TOR Serine-Threonine Kinases