Background: Xylo-oligomers are a kind of high value-added products in biomass fractionation. Although there are several chemical methods to obtain xylo-oligomers from biomass, the reports about the deep eutectic solvents (DESs)-mediated co-production of xylo-oligomers and fermentable sugars and the related kinetic mechanism are limited.
Results: In this work, glycolic acid-based DESs were used to obtain xylo-oligomers from corncob. The highest xylo-oligomers yield of 65.9% was achieved at 120 °C for 20 min, of which the functional xylo-oligosaccharides (XOSs, DP 2-5) accounted for up to 31.8%. Meanwhile, the enzymatic digestion of cellulose and xylan in residues reached 81.0% and 95.5%, respectively. Moreover, the addition of metal inorganic salts significantly accelerated the hydrolysis of xylan and even the degradation of xylo-oligomers in DES, thus resulting in higher selectivity of xylan removal. AlCl3 showed the strongest synergistic effect with DES on accelerating the processes, while FeCl2 is best one for xylo-oligomers accumulation, affording the highest xylo-oligomers yield of 66.1% for only 10 min. Furthermore, the kinetic study indicates that the 'potential hydrolysis degree' model could well describe the xylan hydrolysis processes and glycolic acid/lactic acid (3:1) is a promising solvent for xylo-oligomers production, in particular, it worked well with FeCl2 for the excellent accumulation of xylo-oligomers.
Conclusions: Glycolic acid-based deep eutectic solvents can be successfully applied in corncob fractionation with excellent xylo-oligomers and fermentable sugars yields on mild conditions, and the large amount of xylo-oligosaccharides accumulation could be achieved by specific process controlling. The strategies established here can be useful for developing high-valued products from biomass.
Keywords: Corncob; Deep eutectic solvents; Kinetic mechanism; Metal ions; Xylo-oligomers.
© 2023. BioMed Central Ltd., part of Springer Nature.