Real-time monitoring and quantitative measurement of molecular exchange between different microdomains are useful to characterize the local dynamics in porous media and biomedical applications of magnetic resonance. Diffusion exchange spectroscopy (DEXSY) is a noninvasive technique for such measurements. However, its application is largely limited by the involved long acquisition time and complex parameter estimation. In this study, we introduce a physics-guided deep neural network that accelerates DEXSY acquisition in a data-driven manner. The proposed method combines sampling pattern optimization and physical parameter estimation into a unified framework. Comprehensive simulations and experiments based on a two-site exchange system are conducted to demonstrate this new sampling optimization method in terms of accuracy, repeatability, and efficiency. This general framework can be adapted for other molecular exchange magnetic resonance measurements.
© 2023 Author(s). Published under an exclusive license by AIP Publishing.