Plasma neurofilament light chain in relation to 10-year change in cognition and neuroimaging markers: a population-based study

Geroscience. 2024 Feb;46(1):57-70. doi: 10.1007/s11357-023-00876-5. Epub 2023 Aug 3.

Abstract

Neurofilament light chain (NfL) is a promising biomarker for risk stratification and disease monitoring of dementia, but its utility in the preclinical disease stage remains uncertain. We determined the association of plasma NfL with (change in) neuroimaging markers and cognition in the population-based Rotterdam Study, using linear and logistic regression and mixed-effects models. Plasma NfL levels were measured using the Simoa NF-light™ assay in 4705 dementia-free participants (mean age 71.9 years, 57% women), who underwent cognitive assessment and brain MRI with repeated assessments over a 10-year follow-up period. Higher plasma NfL was associated with worse cognitive performance at baseline (g-factor: β = - 0.12 (- 0.15; - 0.09), p < 0.001), and accelerated cognitive decline during follow-up on the Stroop color naming task (β = 0.04 (0.02; 0.06), p < 0.001), with a smaller trend for decline in global cognition (g-factor β = - 0.02 (- 0.04; 0.00), p = 0.044). In the subset of 975 participants with brain MRI, higher NfL was associated with poorer baseline white matter integrity (e.g., global mean diffusivity: β = 0.12 (0.06; 0.19), p < 0.001), with similar trends for volume of white matter hyperintensities (β = 0.09 (0.02; 0.16), p = 0.011) and presence of lacunes (OR = 1.55 (1.13; 2.14), p = 0.007). Plasma NfL was not associated with volumes or thickness of the total gray matter, hippocampus, or Alzheimer signature regions. In conclusion, higher plasma NfL levels are associated with cognitive decline and larger burden of primarily white matter pathology in the general population.

Keywords: Cognition; Neurofilament light chain; Neuroimaging; Population-based.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Alzheimer Disease*
  • Cognition
  • Cognitive Dysfunction* / diagnostic imaging
  • Female
  • Humans
  • Intermediate Filaments
  • Male
  • Neuroimaging